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The Usual Approach
• Build the model of the week
• Assume new physics contributes 

primarily to gauge boson 2-point 
functions

• Calculate contributions of new 
particles to S, T, U

• Extract limits on parameters of 
model

• CLAIM:  This approach must be 
modified when ρ=MW2/(MZ2cθ2)≠1 
at tree level 

• ρ≠1 =αT can be compensated by 
heavy Higgs

Chivukula, Hoelbling, Evans, hep-ph/0002022; Peskin & Wells,  hep-ph/0101342



Standard Model Renormalization

• EW sector of SM is SU(2) x U(1) gauge theory
– 3 inputs needed: g, g’, v, plus fermion/Higgs masses
– Trade g, g’, v for precisely measured Gµ, MZ, α

– SM has ρ=MW2/(MZ2cθ2)=1 at tree level
• sθ is derived quantity

– Models with ρ=1 at tree level include
• MSSM
• Models with singlet or doublet Higgs bosons
• Models with extra fermion families
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Muon Decay in the SM

• At tree level, muon decay related to input parameters:
• One loop radiative corrections included in parameter ∆rSM

• Dominant contributions from 2-point functions
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Various Schemes for sθ in SM
• On-shell: sW2=1-MW2/MZ2

• Effective mixing angle:

• “MZ” scheme:

• All schemes identical at tree level
• One-loop results show strong scheme dependence
• (Of course in SM, state of the art way beyond one-loop, 

but BSM conclusions often drawn from one-loop 
results)
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Models with ρ≠1 at tree level are different 
from the SM

ρ=MW2/(MZ2cθ2)≠1

• SM with Higgs Triplet
• Left-Right Symmetric Models
• Little Higgs Models
• …..many more
• These models need additional input parameter
• Decoupling is not always obvious beyond tree 

level



Higgs Triplet Model
Simplest extension of SM with ρ≠1

• SM: SU(2) x U(1)
– Parameters, g, g’, v, Mh

• Add a real triplet

– vSM2=(246 GeV)2=v2+4v’2

– Real triplet doesn’t contribute to MZ

• At tree level, ρ=1+4v’2/v2≠1
• PDG: v’ < 12 GeV

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= 2

222
2 '4

1
4 v

vvgMW

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

++=

+

)(
2

1 00 χ

φ

ihvH
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+=Φ
−

+

η
η

η
0'v

Motivated by Little Higgs models
Neglects effects of scalar loops



Scalar Potential
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• λ4 has dimensions of mass → doesn’t decouple

• Mass Eigenstates:

Forbidden 
by T-parity
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• 6 parameters in scalar sector:  Take them to be: 

MH0, MK0, MH+, v, δ, γ tan δ = 2 v’/v

δ small since it is related to ρ parameter



Decoupling at Tree Level

• Require no mixing between doublet-triplet sectors for 
decoupling

• v’→0 requires λ4 →0 (custodial symmetry), or λ3→∞
(invalidating perturbation theory)

• v’→0 implies MK0 ∼ MH+
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Require parameters be perturbative
• Generically, want tree level  > 1-loop contribution

– Require λ < (4 π)2

– Large effects for large mass splittings
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• ρ ∼1+ tan2δ, so δ must be small    

→ Scalar couplings large unless MK0∼MH+

• Large γ will require MK0 ∼MH0

• MK0 → ∞ will force small γ



Heavy Scalars → Small Mass Splittings
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between 
curves

• Plots are restriction λ2 < (4 π)2

Forshaw, Vera, & White, hep-ph.0302256



Upper Limit on MH+ from Perturbativity

Violates perturbativy

Limit from λ4
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MH+ → ∞ requires δ→ 0



Renormalization of Triplet Model

• At tree level W mass, related to input parameters:

• One loop radiative corrections included in parameter ∆r

• Study scheme dependence in triplet model:
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Scheme 1:  Input 4 Measured Quantities
(MZ, α, Gµ, sin θeff)

• Use effective leptonic mixing angle at Z resonance as 4th

parameter

• Variation of sθeff:
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• Could equally well have used ρ or MW as 4th parameter

• At tree level, SM and triplet model are identical in sθeff

scheme

This scheme discussed by:  Chen, Dawson, Krupovnickas, hep-ph/0604102;  
Blank and Hollik hep-ph/9703392
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Scheme 1 results

• Compare with SM in effective  mixing angle scheme
– In both SM and triplet model MW(tree)=79.838 GeV
– MW(experiment)=80.399±.025 GeV

• Input parameters:  MZ, sinθeff, α, Gµ, MH0, MK0, MH+,γ
– cos δ = MZ cos θeff / MW predicts sin δ =.07 (v’=9 GeV)
– System is overconstrained (can’t let v’ run)

• Triplet model has extra contributions to ∆r from K0, H+

• SM couplings are modified by factors of cos δ, cos γ



Scheme 1, Continued

NPSMtriplet rrr ∆+∆≈∆ ~

• contains SM particles (including the Higgs), but 
differs from SM ∆rSM because MZ is input for triplet model 
and calculated for SM 

• ∆rNP contains contributions from SM particles multiplied 
by factors of sδ and sγ and contributions from K0 and H+

(which need not vanish for sδ or sγ =0)

SMr~∆

Can write ∆rtriplet in this way only because we’ve chosen a scheme 
where MW is the same in both the SM and triplet model



Quadratic dependence on Higgs mass

• Triplet model with  MH0 << MK0 ≈ MH ± and small mixing 
(Scheme 1)
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Inputs different in triplet model and SM

Triplet model:  MZ=91.1876 GeV is input

SM (in this scheme): MZ is calculated = 91.453 GeV

Perturbativity requires MK0~MH+ for large MH+

Toussaint, PRD18 (1978) 1626



Scheme 1: MW(SM)-MW(Triplet)

• For heavy H+, 
perturbativity requires 
MH+~MK0, and predictions 
of triplet model approach 
SM

• No large effects in 
perturbative regime

MH+ - MK=0, 10, 20 Gev
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γ=.1, 

MH0=120 GeV

• SM not exactly recovered at large MH+ due to different MZ 
inputs 
Similar conclusions from Chivukula, Christensen, Simmons: arXiv:0712.0546



Reminder of Experimental Status
MW=80.399 ± 0.025 GeV



Scheme 2: v’ as 4th Input

• Alternative approach: Input MZ, Gµ,α, v’

• NaIvely, more natural approach to SM limit
• Naturally connects with SM MZ scheme in v’→0 limit

• Calculate 1-loop corrections to MW in usual way
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Scheme 2

• For v’=0, only consistent 
solution to minimization of 
potential is γ=0 (no mixing in 
neutral sector) and MH+ = MK

•No large effects from triplet 
sector in this case

•Decoupling of heavy Higgs 
is apparent
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MH0=120 GeV, γ=0

v’=0
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MH+ = MK

Difference between 1-loop predictions of 
SM in MZ scheme and 1-loop triplet model



Dial up v’

MH+ (GeV)

MH0=120 GeV, γ=0.1

No Tadpoles
∆

M
W

(M
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)

• As soon as v’≠0, then λ4≠0  

• Since λ4 has dimension, 
decoupling theorem isn’t 
applicable

• Large effects ~v’2Gµ(MH+/MW)2

Difference between 1-loop predictions of 
SM in MZ scheme and 1-loop triplet model



Tadpoles require fine tuning

• In SM, tadpoles cancel 
• Not so for non-zero v’
• Tadpole contributions grow with M2
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Fine Tuning

• No physical motivation for definition of v’ in simplest 
triplet model
– Plots use running MS
– GUT may have natural way to define v’

• Define v’(renormalized) to cancel tadpoles
– Numerical effects still large in this scheme
– Lose predictivity



The Moral of the Story is….
• Models with ρ≠1 at tree level require 4 input parameters 

in gauge sector for consistent renormalization
• Non-decoupling effects vanish for ρ= 1 limit as expected
• Important to compare NP results with appropriate SM 

scheme
– We investigated 2 schemes:  One with 4 low energy inputs and 

one with 3 low energy inputs and a running unknown parameter
• Effects of scalar loops critical 
• Same issues arise when using S/T/U formalism if there 

are tree level contributions 
– THE CORRECT RENORMALIZATION PROCEDURE 

IS COMPLICATED AND MATTERS!
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